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ON COMMONALITIES IN SIGNAL DESIGN FOR
NON-GAUSSIAN CHANNELS

1. INTRODUCTION

Signal design is an important aspect in the overall design of a communication system. Ideally,
the optimal signal set, subject to certain constraints such as bandwidth or energy, minimizes either
the probability of error (P0) or the Neyman-Pearson performance (NP). Even in the fortuitous case
that the channel is modeled as an additive Gaussian noise channel (possibly colored)., there are few
analytic results. Moreover, if the noise happens to be non-Gaussian in nature, the design problem
as described above becomes for all practical purposes analytically intractable.

To address this in this report we apply and extend results from Large Deviation Theory (LDT)
to the problem of signal design for non-Gaussian channels. Originally, Johnson and Orsak consid-
ered this approach in Ref. 1 where they focused on the design of signal waveforms which were
asymptotically optimal with respect to the Neyman-Pearson criterion. We seek to generalize these
results to determine signal sets that are simultaneously asymptotically optimal with respect to the
minimum probability of error (Pe), the mini-max, and the Neyman-Pearson criteria.

One of the main issues addressed in this research is best summarized by the following ques-
tion: Are signal sets operating in non-Gaussian environments that are optimal with respect to the
Neyman-Pearson criterion also optimal with respect to the minimum P, and the mini-max criteria?
Through this work we are able to conclusively answer "yes," provided that the length of the signal
vector grows without bound.

In LDT, the min Pe and mini-max criteria are associated with the Chernoff Distance, and the
NP criterion with the Kullback-Leibler distance. We are able to establish that a unique optimal
signal (if exists) maximizes both of these distances. Significantly, we show that this maximality
extends over the whole class of Ali-Silvey distances.

We show within this report that if the background noise is accurately modeled as a discrete-time
generalized Gaussian random process, then there are only two optimal signal sets with respect to
all of the above optimality criteria. If the tail of the noise distribution diminishes faster than that
of the Gaussian, then the optimal signal waveform subject to an energy constraint is an impulse,
that is, all of the energy is contained in a single sample of the signal waveform. Conversely, if the
tail diminishes slower than that of the Gaussian, then the optimal signal has constant amplitude
over the waveform. Only in the case of additive Gaussian noise is a time-varying signal (except
for a purely impulsive signal) potentiallyl optimum. So, as a by-product, this work implies that
sinusoidal waveforms can only be optimal for the purely Gaussian channel.

Manuscript approved June 21, 1994
'In fact, we know that in the case of an AWGN channel, only the total energy of the signal determines performance.
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In addition to determining the optimal signal waveform, we have been able to analytically
compare the relative performance of these designs with respect to the three optimality criteria of
interest. Results will show that for "small" signal energies, the error exponents associated with
the minimum Pe and mini-max criteria are one fourth of the error exponent of the miss probability
(PM) in the Neyman-Pearson criterion for all non-Gaussian channels. Thus, when signal energies
are small, four times as much energy or four times as much data are required to achieve the same
error exponent in the minimum P,/mini-max performance as that required for the NP performance.

Conversely, for "large" signal energies, we have shown that the error exponents for the minimum
P, and mini-max criteria are no more than one half the error exponent for PM under Neyman-
Pearson criterion. This is to be expected since the Neyman-Pearson detector need only minimize
PM while the minimum P5 detector must simultaneously minimize PF (false alarm rate) and PM
and therefore can commit no more than one half of the computation capability of the likelihood
ratio test to either of the two error probabilities.

Even stronger results are obtained for the case of large signal energies when the background
noise is assumed to be from the Generalized Gaussian family with decay rate r, i.e., when the
noise density is modeled as p,7(x) = K1 exp(-K 2 Ix1r). If r > 1, then we have shown that the error
exponent of the minimum Pe or mini-max performance is 1/2' of the error exponent of PM under
Neyman-Pearson constraints. However, if r < 1, then the minimum P5 /mini-max error exponent
is precisely one half of the error exponent of PM under the Neyman-Pearson criterion. Therefore,
as in the small energy case for r > 1, to equate the error exponents, one must utilize precisely
four times as much energy in the minimum P5 /mini-max detection scheme as that used in the NP
scheme. However, if r < 1, then one is required to utilize 1 / 2 2/r times more energy under minimum
Pe/mini-max consideration as that used in NP considerations.

To support this theory, we have included Monte Carlo simulations. These results show that the
asymptotic results hold with striking precision even when in decidedly non-asymptotic regimes.

2. PREVIOUS WORK

As described in the introduction, Johnson and Orsak [1] were apparently the first to use Large
Deviation2 approaches to design signal waveforms for the non-Gaussian channel.

The results in this report were based upon a generalization of Stein's lemma first offered by
Kullback [3]. It was shown that under Neyman-Pearson optimality criterion, the error exponent
of the miss probability is asymptotically equivalent to the average Kullback-Leibler distance (also
known as the divergence) between the probability measures corresponding to the two hypotheses.
From this, the "optimal" signal waveform in an additive non-Gaussian channel was determined by
maximizing the Kullback-Leibler distance subject to an energy constraint on the signal waveform.

It should be pointed out that others have also considered maximizing the divergence (or other
specific statistical distance measures) [4, 5, 6] between hypotheses as a means of designing "good"

2 Large Deviation Theory (LDT) is used to estimate the probabilities of rare events [11]. For a binary detection
problem, we are in the regime of large deviation when the separation between the probabilities of the two hypotheses
is sufficiently large [2].
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signal waveforms. Grettenberg [7] first proposed the maximum divergence criterion for the Gaussian
channel based upon a duality result originating with the work by Bradt and Karlin [8] where it was
shown that the maximum divergence criterion rendered the minimum probability of error signal
waveform for some a priori probabilities on the hypotheses. Based upon this result, Grettenberg was
able to establish that the Simplex Conjecture must hold for some set of input a priori probabilities.

Unfortunately, as pointed out by Kailath [9], there is no guarantee that the true a priori
probabilities will match those required by this duality principle. In addition, in this work Kailath
offered an alternate statistical distance measure known as the Bhattacharyya distance as a means
of determining the optimal energy allocation in a Gaussian environment. Empirical results seemed
to suggest that the Bhattacharyya distance offered solutions that were more consistent with those
derived by considering the probability of error as an optimality criterion. Nevertheless, as in the
case of the maximum divergence criterion, the maximum Bhattacharyya distance waveforms were
not guaranteed to be optimum for the true a priori probabilities.

In this work, we generalize the results offered in Ref. 1 to consider not only the NP criterion,
but also the minimum P5 and mini-max criterion for the non-Gaussian environment. The signal
waveforms obtained from this analysis will asymptotically minimize the desired performance for
every set of a priori probabilities and therefore will not suffer from the same kinds of theoretical
limitations as those in Refs. 7 and 9.

3. RELATING PERFORMANCE TO CERTAIN STATISTICAL DISTANCE
MEASURES

Consider the following binary detection problem where an N-dimensional vector is transmitted
through an additive iid noise channel:

Ho : Xi = ni iid (1)

H1 Xi = ni + si, ni Pn-

Absolute signal location does not determine performance when the noise density is symmetric.
As such, without loss of generality, we have considered an "on-off" signaling scheme3 where the
observation and the signal vectors of interest will be denoted to as XN and sN respectively. We
will assume throughout that the density function of the noise pn is symmetric and monotonically
decreasing.

The optimal detector computes the log-likelihood-ratio test (LLRT) based on the aggregate of
N samples and compares the output to threshold y:

L(XN) = N ElogP.(Xi Si) '1, (2)
log >~H

3 Consider for example sending binary symbols W = {0,1} in a quadrature phase modulation system. Symbol
W = 1 selects a set of signal samples si, i = 1, ... , N and generates a phase signal s(t) where s(iT.) = si and TL is the
sampling period. Symbol W = 0 generates s(t) = 0 for the symbol interval. Two passband waveforms are generated
for each symbol interval: fq(t) = sin(wct+s(t)) and fi(t) = cos(wct+s(t)). At the receiver, the quadrature-modulated
signals are demodulated, and combined to recover a noisy version of the sequence Ai = si + ni.
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where the threshold is chosen to optimize some performance measure. The false alarm and miss
probabilities that arise from the N-dimensional hypothesis testing problem are defined as aN =

Pr{say H1 IHo} and O3N = Pr{say HoIHI}, respectively [10].

In this report, we seek to determine the signal waveform sN that simultaneously optimizes each
of the following three criteria:

1 (Neyman-Pearson) minimize O3N such that aN < a.

2 (minimum Pe) minimize 7roaN + r1I3N where iri = Pr[H2].

3 (mini-max) minimize maximum {aN, /3N}

For the general non-Gaussian channel, the optimal signal waveform under any of the above
optimality criteria is analytically intractable. However, if we allow the length of the signal vector to
grow without bound, we may readily relate the above performance criteria to information theoretic
quantities that are more amenable to analysis. This is accomplished through the application of
results from LDT to the detection problem.

In the case of the Neyman-Pearson criterion, we have via a generalized version of Stein's lemma
[2, 11] the following asymptotic result:

Theorem 1 Let ON satisfy aN < a where a > 0. Then

lim - log min OiN =-im N E dKL(Si) (3)

where dKL(si) is the Kullback-Leibler distance (or divergence) between pn(x) and pn(x - si), i.e.,
flog Pnp(x)pn(x)dx.

This result demonstrates that with respect to the NP criterion, the asymptotic error exponent is
determined by the average divergence across the data vector. As such, the asymptotically optimal
signal waveform must maximize this average divergence. It was this result that was used in Ref. 1
to design signal waveforms that are optimal for applications where the Neyman-Pearson criterion
is appropriate, e.g., radar applications.

However, in most communication applications, one prefers to use either the minimum P5 or
mini-max criteria. We may obtain an analogous asymptotic result by offering the following gen-
eralization of Sanov's theorem (or sometimes referred to as Chernoff's theorem)[2, 11]. The proof
requires establishing asymptotically tight upper bound and lower bound on the error exponent
that asymptotically converge to the Chernoff bound. The proof, as shown in Appendix A, extends
standard versions based on i.i.d. random variables to the current problem where individual samples
Xi of the vector XN are independently distributed according to known translations of the noise
density, i.e Xi -p2 -,i
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Theorem 2 Let Ph = roaN + 7rl/N. Then

lim -logminP$ = lim -logminmax{aN,0N} (4)
N-00 N N--*oo N

1 N
- lim - maxf-Elog |P(x)pn (x-si)dx} (5)

N
- lim +Zdc(si), (6)

where the so-called Chernoff distance dc(s) is given by maxA{-log f pA(x)pl-A(x - s)dx}

As opposed to NP considerations, in this case, the asymptotic error exponent for both the
minimum Pe and the mini-max detectors is determined by the average Chernoff distance across
the data vector. Thus, under these optimality criteria, the asymptotically optimal signal waveform
must maximize the average Chernoff information.

Summarizing, under the consideration that the length of the signal vector grows without bound,
the NP performance is determined by the statistical distance measure dKL, whereas the minimum
Pa/mini-max performance is determined by the statistical distance measure dc. This observation
clearly begs the question: How are dKL and dc related in the non-Gaussian environment? To
address this, in the following section we consider two signal regimes, one being the case where the
admissible signal energy is small and the other being the case where the admissible energy is large.

4. RELATION BETWEEN THE CHERNOFF INFORMATION AND THE
DIVERGENCE

The Chernoff Information and Kullback-Leibler distances are computed directly (see Appendix
B) for a selection of pdfs as shown in Table 1. One can observe that for the non-Gaussian noise
models considered, there is very little functional similarity between dc and dKL. However, we

Table 1 - Chernoff Information and Kullback-Leibler Distance

Note: Ek is the complete elliptical integral of the first (real argument) and second (imaginary argument) kind. K114 is the
modified Bessel function of the second kind of fractional order 1/4.

Noise._ _ P. (X) , ddc(s) | _KL_(_)N o s e_ _ _ _ _ _ _ _ _ __I_ _ _ _ _ [dd ~ ~ ( s

Gaussian 1 2e2 v2

Cauchy 1 1 - 2 1 log(i + 2-7ro, -logEk--~ 
1 ~~~~~~~~~~~~r 2 162 15'L

Laplacian I voe | i -log(1+ Is,) ±s- e -1
________ a__ ,42 (3

______ x~~ ~ ~~r 7 flog 21 1Gen.Gauss4 1 ex Aell}gi�9 logIKI 2 4 [6 +2 r(l+I)A(r)exP{ [(r) 32 2 A4 r2(I) 2 +(4)

A(r) = [a211)] 2 (r = 4)
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will be able to analytically demonstrate that there are quite strong commonalities for these two
distance measures when one considers both small and large signal displacements s.

Before proceeding, we wish to make an interesting observation regarding the structural rela-
tionship between dc and dKL and establish conditions for the reduction of dc to the negative
exponent of the Bhattacharyya distance.

4.1. Bhattacharyya Distance, Kullback-Leibler Distance and Chernoff Infor-
mation

Let dc(A) = -log ff CpA(x)pl-A(x - s)dx then

Fact 1 For a fixed value of s, the derivative of the Chernoff Information at A = 0,1 is equivalent
to the Kullback-Leibler distance.

Proof:
9 pdc(A) f PA(X)P-A(X-s) log)- 1 dx

fpA(x)p1A;(x-s)dx 7

_ | +dKL(p(X-S),p(X)) @ A = 0
1 -dKL(p(x),p(x-s)) @ A = 1

For symmetric pdfs, dKL(p(X),p(X - s)) = dKL(P(X - s),p(x))-O

Fact 2 For symmetric densities, dc(A) is both symmetric and concave in A.

Proof:

a2 -) = f ep (r)p1-A(x-s) log ~~~-)~yd] -f pA(x)pl-A(x-s)dxf p'(x)pl' (x-s)log j dx (8)
dc A) [f p)(x)p1A'(x.s)d_]2

which is negative by Schwarz integral inequality.0

Fact 1 shows that dc(A) initially increases and eventually decreases with A at the same rate.
Combined with Fact 2 it establishes that there must be a maximum at the center of symmetry
A =. Figure 1 illustrates this.

Since the Bhattacharyya distance between p0 (x) and pi(x) is defined as dB = f P 12(X)pl1 2(X)dx,
we have established that

Fact 3 For the translation problem of distinguishing between p(x) and p(x - s), the Chernoff In-
formation is equivalent to the negative of the exponent of the Bhattacharyya distance for symmetric
densities.

We use A = - and use dc =-logdB =d -log f pn(x)pn(x-s dx as the Chernoff Information2
throughout this report.

Figure 1 also suggests a correlation between the slopes at end points ±dKL and the maximum
value dc. Namely:
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Chemoff Information vs. Convex-combination coefficient

0.4 0.5 0.6
Lambda

Fig. 1 - Chernoff Information as a function of
X for symmetric noise density functions

Conjecture 3 It is plausible that for some symmetrical density functions, maximizing the Chernoff
Information also maximizes the Kullback-Leibler distances.

This observation is certainly true for the set of general exponential densities evaluated in this
report, as shown in the analyses of small- and large-signal behaviors of the distances in Sections
4.3. and 4.4. We first offer a more general theorem using the concept of Asymptotic Most Favorable
Statistics advanced by Orsak and Paris in Ref. 6.

4.2. Asymptotically Most Favorable Signal

Definition 1 Signal s$N is called asymptotically most favorable (AMF) if and only if for any other
signal sN

li- 7roa(sN) + 1r1 (s*) > 1 for arbitrary (7ro, 7i)
N oo 7r~oa(SN) + TIlp(SN -

(9)

where a and 3 are the false alarm and miss probabilities defined for the binary hypothesis problem,
and ion, 71r the a priori probabilities.

For optimal detectors, each of the terms of the fraction is the minimum probability of error
min Pe(s) as a function of the signal s.

7
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Lemma 4 Any real convex function C(x) of real argument x may be expressed in the following
form

C(x) =X(Z) + E 1(1 - 71,i) - 71,iXI (10)

where < is some linear function and Tir,i E (0, 1), i = 1, ..., oo are real.

Proof: Let f(x) be .- (1 -l riT) - 7rilxI. For i = 1, f(x) is a convex function with one degree
of freedom controlled by rl,, which determines the location of the breakpoint and the slopes. For
each additional value of i, the sum continues to be a convex function with an additional degree of
freedom. In the limit, f (x) constructs a convex function completely specified by the infinite set of
{ir1l}. The linear function q() specifies the location of the minimum of the convex function. a

Theorem 5 The asymptotically most favorable signal s*N asymptotically maximizes any f-divergence
d(po(s N), p1(sSN)). Conversely, any signal SN that asymptotically maximizes any f-divergence is the
asymptotically most favorable signal.

Proof: For any f-divergence of the Ali-Silvey class [4]

d(popi) = h[p dp) (11)

where h is a real, increasing function, and C is a convex function over [0, cc). By Lemma 4

d(popi) =dh[£p 1O( Epo (1- 7,)- j-dp 1] (12)

Using the identity min(a,b) = 'la + bl + 'la - bl, with a = To = 1 - 7r1 and b = Irldpi , it

can be shown that each of the terms Ep. (1 - r1 ,j) - dPI is precisely (1 - 2min e,i), where
min P = Trea + r 1p, and T0 = 1-r 1 .

Therefore,

d(po(sf~'),p1(s~)) _ h (1-2 mm ein sf)lim - lim L dpo(s* ) + i (1-2min~efi(sN))] (13)
N-oo d(po(sN),pi(sN)) N-*oo Nh[_pO(d ) + E___ (1-2min pi(SN))]

The AFM condition of Theorem 5 is satisfied for s*N if

lim mine,(s ) > 1 (14)
N-0o0minP~,i(s*N)

for each set of priors (roj , 7r1,j)-

8
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Applying this condition, we have:

lim d(po(sf)pj(s'*)) lim 0(l) + a + c > 1 for some positive a, c (15)
N-moo d(po(sN),pi(sN)) - N-oo 0(1) + a

The converse may be proved by reversing the steps above. 1i

Corollary 6 The signal sN that maximizes the Chernoff distance between {pO(sN),p1 (sN)} also
maximizes any f-divergence between these distributions.

Proof: We have shown in this report that the signal sN that maximizes the Chernoff distance is
optimal under the min Fe criterion. This criterion is precisely the condition required by Theorem
5. Li

4.3. Small Signal Behavior

It was shown [1] that for small signal values, the divergence is locally proportional to an £2

distance metric (e.g. s2 ) where the multiplicative constant is one half of Fisher's information for
location. Mathematically this is best stated as

lim dKL(s) 1 (16)
2

where I is Fisher's Information for location. A similar result for the Chernoff distance can be
easily established.

Proposition 7 For diminishingly small values of s, dc(s) is locally an £2 distance metric with
multiplicative constant 1, i.e.,8'

lim 1. (17)
8

Proof: Let z (X)dxf) p±n(x) and Pn(x)d-f 8 pn(x). Then dc(s) =-log f pn(x)2 pn-()2dx and the
first and second derivatives are

Sdc(s) = a-log f pn(x) pn8s(x) dx - 2n(r)2Pn-s(ajpdx

'5 2dc(s) 2 2 + (18)

[fp p(x)ip._8 (.)idx]
fpn(x)p2p ) x2Pn_(x)dx

[f p.(x) 2p._8 (x)idX]

For symmetric and decreasing densities, f1O ji(x)dx = 0 and fjO kn(x)dx = 0, therefore

- lim 2 = 1 Pdn(x)d = 4 (s) (19)8 ~s2C =41 p( 4

9
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where I(s) is the Fisher Information of the location s. dc(s) may be written in terms of a second
order Taylor series expansion around s = 0 where the constant and the first order terms are zero,
and the second order term is given in Eq. 19.0

Thus, these two facts (Eqs. 16 and 17) together show that both the average dKL and average
dc are locally Euclidean metrics. However we recognize that for small signal amplitudes, the error
exponent for the minimum Ps/mini-max detector is one fourth of the error exponent of the NP
detector. Thus, for small signal energies, this then requires that the minimum probability of error
detector utilize four times as much energy as the Neyman-Pearson detector to obtain the same
performance (as measured by the error exponent.)

This small signal generalization implies that the local performance under the three criteria of
interest depends only on the signal energy and not on the specific waveform. As such, in some sense,
this result demonstrates that non-Gaussian environments behave as Gaussian environments when
the signal energy is small. One might claim that this is merely the case because we are allowing
the length of the data vector to grow without bound and as such the Central Limit Theorem would
apply. However, we will show conclusively that this is not the case for all energy constraints.

4.4. Large Signal Behavior

As opposed to the results in the small signal case, we will show that the large signal performance
depends explicitly upon the tail of the noise distribution of choice. To begin, as was shown in Ref.
1 that for large signals, the Kullback-Leibler distance is well approximated by the negative of the
logarithm of the density function. To be more precise, it was shown that

lim dKL(s) = 1s * so-logpn(s)

for noise densities satisfying some very general conditions. Similar large signal results can be
demonstrated for the Chernoff distance. To begin, we supply an upper bound which holds for the
same general class of distributions considered in Ref. 1.

Fact 4

dc(s) _dc (s) 1
lim =lim < 

Boo dKL(s) s-Moo-logpn(s) - 2

The proof is based on Jensen's inequality.

This fact suggests that for large signals, the error exponent for minimum Pe/mini-max detectors
can be no bigger than one half of the error exponent for NP detectors. As described in the
introduction, this should be the case since the NP detector need only minimize PM while the
minimum Pe detector must simultaneously minimize PF and PM and therefore can commit no
more than one half of the computation capability of the likelihood ratio test to either of the. two
error probabilities.

10
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If we limit our consideration to the class of generalized Gaussian density functions, i.e., densities
of the form

Pn(x) = 2F(1 + 1)A(r)exP A(r)

then we may offer much stronger results.

Fact 5 Let the noise be modeled as an arbitrary generalized Gaussian density function. Then

dc (s) _f if r>1i
- log p. (s) i{ 2 f r <1

The proof is shown in Appendix C.

Hence, for this case we may consider large signal approximations to dc(s) as:

dc(s)={ logp(') if r > 1 and s > 1
_o gpn(S) if r < 1 and s > 1

2

By comparing the large signal results presented here to those derived in [1], we observe that
the error exponent (performance) for all three optimality criteria is determined by the quantity
- logp (s), which in the generalized Gaussian environment is equivalent to an ir metric of value Is1'.
Thus, for both large and small signal energies, the dc and dKL are identical up to a multiplicative
constant. However, it should be pointed out that this constant diminishes exponentially fast as
the decay rate of the density increases. This implies that for a fixed energy level, the relative
performance of the minimum Pe/mini-max detector as compared with the NP detector falls off at
a rate of 1/2r in the performance exponent as decay rate increases. Nonetheless, if we combine
this result with the small signal results, we see that in both regimes any signal that optimizes the
Neyman-Pearson performance also optimizes the performance as measured by minimum Pe and
mini-max criteria.

5. SIGNAL WAVEFORM DESIGN FOR THE NON-GAUSSIAN CHANNEL

For the family of generalized Gaussian noise models indexed by r, we consider the practical
problem of allocating the available energy on the samples of the signal sN so as to minimize the
three performance criteria of interest. Without any available analytic solutions, we rely upon the
asymptotic relations presented in the generalizations of Stein's Lemma and Sanov's Theorem. To
accommodate this, we pose the signal design problem in the following way: Let sN be a length
N signal vector. Further, let gM be the N x M length signal formed by repeating 5 N precisely
M times. We seek to determine the signal waveform gM or equivalently sN subject to an energy
constraint such that the three performance measures of interest are minimized as M -* cc. Note
that we have moved from the original problem of an signal of finite energy to a power signal, so
that the energy constraint E on sN becomes the power contraint on sM. For simplicity we use the
same notation E for the power constraint.
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Based upon this formulation, we know from our asymptotic analysis that the optimal signal
subject to the NP criterion is determined by maximizing the quantity

1 N N

NEdKL(si) s.t. Es? < E.
i= 1=1

Alternatively, we have shown that the optimal signal waveform subject to the minimum Pe and
mini-max criteria is determined by maximizing the quantity

1 N N
- Edc(si) s.t. s? < E.

__ 1 i=1

When the signal energy is small, we know from our analysis in Section 4 that any waveform
satisfying the energy constraint will be optimal for all three optimality criteria. However, if we
consider the large signal regime, we show in this work that the optimal signal must be either fully
impulsive, i.e., s, = VE4, si 0 0 for i = 2, ..., N or constant for all i, that is si = V/T7N for all i.

The optimal signal sN must maximize the Lagrangian

1 N N
J = d(si) + p(E - E s?), (20)

i=1 i=1

where the subscript on d(si) has been left ambiguous to account for both dc and dKL. To find the
maximizing {si} for J, we set its gradient w.r.t. sN to zero.

0 = [VJ]i = Jd(si) - 2psi,i = 1,...N (21)

where d(si) is the derivative of d(si) with respect to si.

Equation 21 can be shown to have only two solutions, namely si = 0 and si = s*, i = 1, ..., N.
for some s* 7 0, as demonstrated in Fig. 2 for the limited set of pdfs for which we can numerically
evaluate the distances.

The maximizing signal set sN therefore must have the form si = E/IL for i = 1, ... , L and
zero for i = L + 1, ..., N for some L satisfying 1 < L < N.

We pause for a moment to consider the practical implications of this model. First for the
samples L + 1, ... , N, the received signal is identical under either Ho or H1, and more importantly,
this fact is known to the detector that will disregard samples in this interval. That raises the second
question, namely that if only L < N samples are ever used to represent the binary symbol, why not
omit N from the problem? The answer is to vary N would amount to changing the symbol rate
of the problem, and in turn the power E of the signal, thus making any performance comparison
meaningless.

The solution to the minimization problem of Eq. 20 is most succinctly stated through the
following proposition and its validity may be readily verified for the Generalized Gaussian family
of pdfs, but it is rather complex for the general case.

12
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Fig. 2 - Derivative of Chernoff and KL distances w.r.t. displacement s vs s
intersects any linear function through the origin at most one more point

Proposition 8 Let pn(x) be an element of the generalized Gaussian family of density functions.
Then L = N for r < 2 and L = 1 for r > 2 under each of the three optimality criteria of interest.

To demonstrate this, consider Figs. 3 and 4. In these two figures we have plotted the average
Chernoff distance and the average Kullback-Leibler distance, respectively, as a function of L for
various levels of power E E [0.1,100] for the case of N = 20. When the noise is Laplacian (r = 1)

or Cauchy, the maximum occurs when L = N, while for generalized Gaussian noise with r = 4, the
optimal choice is L = 1. We see that for small signal energies, as for Gaussian noise, the average
divergence and Chernoff distance are essentially invariant to the choice of L. This is to be the case
since in this energy regime, only the energy and not the choice of L determines performance. In
addition, one can observe that aside from the scale (1/2' for large E, 1/4 for small E) the "shape"
of these error exponents is essentially identical; this verifies the strong similarities established in
the previous sections.

Since any waveform with a given energy is optimal for small amounts of energy, we then have
arrived at the following optimal signal design procedure for the generalized Gaussian channel: If
the tails of the noise density fall off faster than Gaussian tails, the optimal length N signal in both
the large and small energy regimes is an impulse with amplitude -v'i. If, however, the tails fall
off slower than Gaussian tails (e.g., Laplacian noise) then the optimal length N signal is constant
with amplitude E/X7N.

To demonstrate the generality of these results, we consider the Cauchy density as an alternate
statistical model for the noise. As is well known, this model has polynomial tails and as such
differs significantly from the generalized Gaussian model considered in this report. In addition, in
this case the tail of the Cauchy density diminishes significantly slower than those of the Gaussian.
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Thus, our theory would suggest that constant amplitude signal waveforms should be optimal. If
one considers Figs. 3 and 4, then one can see that this is in fact the case for the error exponent
with respect to both dc and dKL-

It should be stressed again that these length N signals are optimal only when the waveform sN
is repeated an infinite number of times. Of course, this is never the case in practice. Therefore, we
are obliged to consider the performance of these signal waveforms in practical settings.

In Fig. 5, we have plotted the error exponent derived from simulations for the minimum Pe
detector as a function of L for various levels of energy where one period (M = 1) of the signal
is transmitted in an N = 20 sample waveform. The simulation was performed on a Connection
Machine CM-5 for the present set of density functions. The simulation details are documented in
Section 6.

From an asymptotic standpoint, this case of M = 1 is a worst case scenario. Nevertheless, as
one can see, Fig. 5 is strikingly similar to both Figs. 3 and 4 even though the functional forms of
dc, dKL and Pe are drastically different from one another. This seems to suggest that the similarity
between dc, dKL and the minimum P, is much stronger than that offered by the duality principle
of Bradt and Karlin as discussed in Section 2 of this report.

6. SIMULATION

The objective is to estimate the detection error rate for our binary detection problem (Eq. 1)
for equal priors, and when only one period of the optimal signal is used. For power E and number
of nonzero samples L, a noise sequence is randomly generated according to density distribution

Gaussian: Empirical Error Rate Cauchy

ID
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Fig. 5 - Empirical Probability of Error vs the number of nonzero samples of the
signal waveform, L, for a variety of signal to noise ratios, N = 20 and M = 1
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function p, of one of four varieties, namely Gaussian, Laplacian, Cauchy, and Generalized Gaussian
with decay rate 4. In the basic Monte Carlo simulation, the following is repeated until the desired
accuracy is reached:

* Each of the L samples of the sequence are examined. This sequence is equivalent to a
L - sample waveform received at the output of a noisy channel under the null hypothesis Ho
(zero signal energy).

* Each received sample is transformed by the log-likelihood function log PP-S. Here p,, is
a formula that describes a probability density function. pn,- is another formula for the

alternate hypothesis pdf, translated from Pn by the amount S =

* All L transformed values are added and the sum is compared to a threshold 0. If positive,
the error count is incremented by 1. (This is because the present sample is transmitted under
Ho.)

The empirical probability of error is the error count divided by the number of experiments.

Importance Sampling

As the empirical probability (error rate) becomes very small, Monte Carlo simulation requires
an excessive sample size-in the order of the inverse of the error rate. Instead of using the sample
mean and s = 0 signal amplitude for Ho, we use the Importance Sampling technique. For a
rigorous treatment of the subject, the reader is referred to the book by Bucklew [2], and the paper
by Orsak[12].

The algorithm is as follows:

* L samples of randomly generated sequence ni are added with a bias, xi = ni + si, si =

* Each (biased) received sample xi is transformed by the usual log p-- where s=

* For each sample, a counter-bias weight wi is also calculated. wi = log Pn (x,)

* All L transformed values are added and the sum compared to a threshold 0. If positive, the
error count is incremented by an amount exp(W). The exponent W is the sum of the wi of
each of the sequence sample.

Even though the sequence still represents the waveform received under Ho, the bias places the
distribution precisely at the threshold of the log-likelihood-ratio test, such that an "error" occurs
with a probability in the vicinity of 1.

16
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Random Number Generators

The simulation runs on a Connection Machine CM5 and uses the uniform random number
generator native to this parallel architecture. The Gaussian generator uses a simplified version of
the polar method [13]. The Laplacian and Cauchy generators use the transform method[13].

The Generalized Gaussian index 4 generator uses in addition to the uniform number generator
a Gamma(-, 2) generator. The latter uses Berman's algorithm[14].

Simulation Codes are documented in Appendix D.

7. CONCLUSION

We have considered the problem of waveform design in a non-Gaussian environment for com-
munication applications. As is well known, optimal Neyman-Pearson, minimum error rate, and
optimal mini-max solutions are analytically unavailable when the background noise deviates from
Gaussian. In an effort to obtain "good" solutions, we have adapted Large Deviation based ap-
proaches to determine the asymptotically optimal signal waveform.

The principal result contained in this report was to show that for a given statistical model of
the background noise, one signal waveform is optimal with respect to each of the three optimality
criteria described above. This result holds for both large and small signal energies (amplitudes).
Moreover, we have been able to obtain the precise waveform for a wide class of non-Gaussian
statistics of much current interest. In addition to the above, we have demonstrated the following
specific results:

* extended Chernoff's theorem for the non i.i.d. problem where the translation amount is
known;

* demonstrated that the Chernoff Information and Kullback-Leibler distances determine the
error exponent in the problems of interest;

* calculated large and small signal approximations for each of these statistical distance mea-
sures;

* calculated formulae for dc and dKL for a variety of non-Gaussian statistics;

* showed that for the generalized Gaussian class of pdf, maximizing dKL also maximizes dc,
and vice versa;

* showed the maximizing signal of these two distances is an asymptotically most favorable
signal, in the sense that it also asymptotically maximizes all distances in the Ali Silvey class;

* compared energy required to maintain same error exponent under NP and Bayes criteria;

* designed the optimal signal waveform under NP, mini-max and Bayes optimal criteria;

* confirmed by simulation the effectiveness of the asymptotic theory as applied to the finite-
sample problem.

17
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Appendix A

DETAILED PROOF OF CHERNOFF THEOREM

In this appendix we present a detailed proof of Chernoff Theorem extended to the case of
independent but not identically distributed samples.

Consider the following binary detection problem in which an N-vector is sent through additive
iid noise channel in one case with zero signal, and in the other with some known signal sN =

Isi, i =1.,NJ.
Ho: Xi = ni iid (A-1)
H :Xi = ni + si, ni Pn

The optimal detector computes the LLRT based on the aggregate of N samples and compares
it to some threshold A:

L:XN = log(P~i8) > ),(A-2)
N p(1Xxi) Ho

The decision regions are denoted Zo and Z1:

Zjle-' {XNIL(XN) > My} (A-3)

The false alarm and miss probabilities are defined as aN = Pr{say H1IHo} and AN = Pr{say HolH1 },
respectively. Define the normalized convex combination distribution pA as

p (XNjdef p0 (XN)pA(XN)PA f PlA(ZN)pA(ZN)dZN (A-4)

For the additive iid noise of Eq.( A-1), under either hypotheses, the difference between the
received signal and the transmitted signal (XN _ SN) = f- siji = 1,.. N}. Each term xi -s
is d p,. Thus

ps(XN) = rJVl pi(Xz) = rjHi PhA(xi)P (xI) = -N P.( (i-si)(

where A5

JA(si) -.• r p1A(zi)pA(zi - si)dzi

The following statistics may be defined in terms of the divergence between the distributions of
the hypotheseses po and Pi and the normalized-convex distribution pi:

GoA(XN) - I FiV log fti(-

Gl,A(XN) -f Ei = log Pn(xi-s,)
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po,pi may be expressed in terms of G and pA as follows:

p(XN) = exp (NGoA(XN))ps(XN)
= exp(NGoA(XN))li pi(i) (A-7)

p(XN _ SN) = exp (NG1,AA(XN))P7(XN)
= exp (NGl,A(XN)) Hj PA(Xi)

Observe that under pA (XN), £{log p(1)1} is identified as the negative of the Kullback-Leibler

distance dKL, so that:

£{GO,A(XN)} = N E £{1lg p(,I ) }=
£{Gl,A( N} = N £{logfl)} = NEi'l-dKL(p~,pn) (A-8)

By the Strong Law of Large Numbers, each of the statistics, Eq.( A-6) approaches its average
defined in terms of the Kullback-Leibler distances. Therefore, the sample average of the statistics
must approach the sample average of the KL distances.

HimN c GO,A, = limN, Bc N-i-dKL(PipPn) a.s. (A-9)
liMN ,,,0 G1,A = 1E Bo -j-dKL(PiPn-si) a-S-

Define the c -neighborhoods AN of po and BN of p' in terms of the statistics G and their

averages:
AN Le {XN: IGoA(XN) + ±ZN-1 dKL(P, ,Pn)I < E}

BN - {XN IGlA(XN) + N -i 1 dKL(P, Pn-si)l < C}

As N -* oo, by (A-9) we must have that VE,6 > 0,3No such that for VN > No,

Pr(ANIXN ps(XN)) > 1-A
Pr(BNIXN ps(XN)) > 1- (A

We can now relate the false alarm and miss rates to the e-neighborhoods of po and pi as
functions of E and the Kullback-Leiber distances under probability measure pA.

N = f' ps(XN)eNGo,A(XN)dXN

> fZIvnAN ps(XN)eNGo,;k(XN)dXN (A-12)

> fZNnAN pA(XN)e- Zi=l dL(Pi Pn)dXN

As N - oo, we already showed that GoA(XN) approaches EY z 1 dKL(Pi ,pn), i.e:

N
c < |GO,A(XN) + NJ ZdKL(P ~Pn)I < C (A-13)

Continuing developing inequality (A-12), we have
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0 N > e Ne l dKL(PAP pi (ZN nAN)AN)14) (A-14)
> e-Ne-Eii dKL(PI Pmn) [ps(ZN) + P (AN) - 1],

where the last inequality is from P(Z n A) = 1 - P(ZU 7A) > 1- P(Z) - P(Af) = 1 - (1 - P(Z)) -
(1 - P(A)) = P(Z) + P(A) - 1, and the assumption that P(Z1N(XN)) > 1 with Xn distributed
under PsS

The first Neyman Pearson lower bound is then

OgN 2 e-Ne-,- dKL(P Pn)[l + 1 - 6 - 1]

Nlog aN > -- z- N 41dKL(P\, Pn) + N0log( -6) (A-15)

limNo 0log aN > limNy -kZi 1 dKL(PX Pn)

On the other hand, if P(Z1N(XN)) < 2 under this distribution then we have P(ZON(XN)) > 1
and a similar result holds for the miss probability as follows.

limN, N1 log9 ON > limN -. EZ' 1 dKL(P , pn.-s) (A-16)

Combining Eqs. (A-15) and (A-16), we have the following inequality that can be minimized
with respect to A to achieve a minimax solution for P,.

1 1 N N
lim -log (max(aN, PN)) > lim -N min(E dKL(P*\ P.), dKL(PA, Pn-Si)) (A-17)

N~~oo N N~~oo N i=1 i=1

Now, the minimum probability of error the best achievable exponent is E'y dKL(PA0 ,Pn),
where A0 satisfies

(N N
A, = arg(o<A<i) jidKL(pApn) = PdKL(p ,Pn-si)}

Hence,
lim minP, > lim e- nfdK(pi ,pf) (A-18)

N-*oo N-*o0

Before proceeding any further we must make sure that the assumptions made in the derivation of
equations (A-15) and (A-16) still hold simultaneously.

Lemma 9

argA {dKL(PiXN),p(XN)) = dKL(Pi(XN),p(XN-SN)) such that lim CIzN(xN)] ='

argA {dKL(p(XN),p(XN)) = dKL(p (XN),p(XN -N))
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Proof: For minimum Pe define:

Z0{ XAT ip 0(XN) > 7ripi(XN)}

and
ZN - {XN1lripi(XN) Ž rp(I

The likelihood ratio is,

Therefore,

N i=1 { iuH

lim £(XN) = lim -E log
N-oo I N-00 N i Po(xi)} Ho

Therefore for large N,

£*[IZN(XN)] = P[XN e 4%IIXN pi]

P[XNI E log{PEL )} < OXNPA]-

e*[IZN(XN)] = P[XNI N log{P( ) } > OXN PSA .

and

Now by the strong law of large numbers,

liMN, o N i log{E } = IimNoi ZN- l flog {09 } o(xi)dxi

Also for A = A0 :

J log { E!(X) } p'(xi)dxiE I ~ P0(xj) PA0 Gi 
= Nog P() po(Xi) }P 

N N
-EdKL(PiOPo) + E dKL(Pi0,Pl)

i=1 i=l
= 0

Therefore,
limN~oo k x N i 1 log Pi (xi) 0 a.s }

N 2= ~ POQ-x JJI
(A-20)

Hence,1

£*[IZN(XN)] - £*[IZN(XN)] = 2

0
The lemma shows that we still satisfy the assumptions in arriving at Eqs. (A-15) and (A-16).
Hence from Eq. (A-18),

lim 1 log-min , > im - IdKL(PAOP,) (A-21)N -*oo N l g m p N > N -*o - iZ d Lp=,p )

a.s. (A-19)
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Chernoff Information

Lemma 10

1N 1N.

-N EdKL(PA~,P.) = Ii - log JA(SN)

Proof:
log JA(SN) = log J P1-A(XN)PA(XN _ SN)dxN.

Since the components of XN are independently distributed,

N
log JA(sN) = ElogJp1 A(xi)p(xi - si)dxi

i=1
N

= E logJ e(1-A)lgP(xi)+A 1gP(i-si)
i=l

Maximizing JA, wrt A:

N
~.log J,\(S N) = P1..-J(xi)pA(x. - si) [log p(xj - Si) - logp(xi)]dxi.

N 1 u.\(.s~oPXxi - S2)
J()JP k'Xs))P'\(Xi - i)lgdxi

N P(Xj S)

- -dKL (PA7Pn-si) + dKL(P, P)].-
i=l

which must be equal to 0 for min log JA(XN). Hence the minimum A0 is given by,

N N
E dKL(Pi,,P.) = EdKL(P,,Pn-sj).
i=l i=1

Now to get minA N log JA(XN), we must proceed as follows. Consider:

log p~(XN) = (1 - A)logp(XN) ± Alogp(XN - SN) -log JA(SN).

Therefore,

log JA(S N) = (1- Alog pX + A log pX N
PAs(XN) P(XN)

Taking the expectation value w.r.t.p1,(XN):

log JA(SN) = -(1I-)dKL(pqA(XN),p(XN)) - AdKL(PA (XN),p(XN -sN))
N

-jZdKL(pA0 (Xi),P(X2 )) (A-22)
t=1
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by making use of the fact that A0 results in the minimum value for JA(sN) .Hence we have,

N N
-logJ, 0(SN) = ZdKL(Pipn) = ZdKL(PPn-sj).

i=l 1

Hence the result.O

From Eq. (A-21) we have,

1 n pN > lim 1 N)
N-+ooN No 

which is the desired lower bound for min Pe.

Upper bound, Chernoff

We will now show an upper bound for minP, which approaches the value of the lower bound,
thus establishing the asymptotic equivalence of the Chernoff Information dc to the best annihilating
rate for Pe.

min pN

N log min PiN

= f min (7ropn(XN), 7rlP n (XN - SN))dXN
< f (irOPn(XN))1-\(7r1pn (XN - SN))AdXN

= 7O \A iN=' f Pin A(xi)Pn(xi - si)dxi
= 7r1-A rT exp (E log Jf Pnl-A(xi)p\(xi - si)dxi)

< N log (lr7A7r') + N -E 19fPnl\(xi)P\(Xi-si)dxi.

Taking the limit:

liM 10l Mim pN < lim min N log Pn (xi)pA (xi - si)dxi
N-~oo A N _n

i=1

= lim min Nlog JA (sN)
N-=oo A N

-lim 1 log J'\J(N).
N-*ooN

Take the upper and lower bounds together, we have the limit.

(A-23)

(A-24)
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Appendix B

DIRECT CALCULATION OF CHERNOFF INFORMATION

In this appendix we derive the Chernoff Information for the Gaussian, Cauchy,
Generalized Gaussian of index 4 densities. The results are summarized in Table 1.

Laplacian and

Gaussian

Probability density function: 1 _X2

Cc(sa) = -logf A, e_2 exp - I (x2 + (x - s) 2)dx
- -log f exp - (X - 1)2 + ()2)dx

Cauchy

Probability density function: fon 

Cc(a,a), = -log fja 1 dx
70 (,+ _2) (1+v

2 -og f- I 2 - -
= - log ira 4 22 2 ( 44 + dy

- _1 _y 2 ro2 1 +_
- -iu0 lre Jo

(B-i)

From Ref. B1, Formula 266.00, and definitions and modulus properties of F in pages xv, 12:

D(a, a) = fo40 1 dy = Y(r, k)

where
(B-2)k2 = 22-

.F(7r,k) = 2F(7,k)

.F(a., k) is the complete elliptic integral of the first kind that we denote in Table 1 of the report
as Ek.
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The application of Formula 266.00 requires that

2a 2 _ _ < dS 62 + +4
2 2 16 o4

This can be shown to be true for all positive values of a and o.

Apply Eqs. (B-2) to (B-1), we have the substitutions

2 = - s2
c4 =S2 (2 + S4 1a 2 __ 1

,2 ~2
> k = 1 _ e2_-___

2 2 8

so that
C(s, a) = - log 27 D(s, a)

- log 2e 1 .F( -r k)

where k is defined in Eq. (B-3).

Laplacian

Probability distribution function: 1Te e

CL(s,a) = - IgI -2 /,dx
e2--7 dx fo 1e______ xs~x~ w e21 7(-x-x+s)dx= - log[f-r O + f8 ffe26/V-( dx + fa V2e26Iz/i dx]

= -log [e V2 + I e /i]

- 2 6/v -log(l + i).

Generalized Gaussian index 4

Probability distribution function: 2 1(1+ )A) exp -[Ar)]4, where A(r) = [o211'3/,?]2 .

CGGa4(S, a)

Y=X_ s

-lo r+() 2 (X)p2-sdlog JP: Pn)Pn- 3xdx
-log ) r+ exp- 4-(X4 + (X - s)4 )dx

- log 1 2 fo+° exp -2A (2y4 + 3s2y2 + " )dy
l ( 4) + R-l~grw exp A4 (Y4 +32S~y2)4log P(,A4)+ j4 - log f, exp I ~(y4+ 3S2y2)dy

A4 4 4 

(B-5)

(B-3)

(B-4)
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The argument of the logarithm of the third term in Eq.( B-5) is evaluated using an identity in
Ref. B2. The identity is

exp -p2X4 - 27
2x2dx = 2-22/ ) (B-6)

where K, is the modified Bessel function with fractional order 4. We apply identity Eq. (B-6)

with /3 = and 4

The integration is then

t 1 4 ~22 - 3 - 2Se9
,,exp A4(Y + -s y )dy = se3 4K( 9 4)(B-7)

4 232 4 2A~

Substituting
7 4 3 4C(a, a) = 7-3 s- log VTAlog Ki 9 S (B-8)
32 A4 (5)Al K 3 2 A4 )

where A = A4 = ( 17T)

REFERENCES

Bi. P.F.Byrd and M.D.Friedman, Handbook of Elliptic Integrals for Engineers and Scientists.
Springer-Verlag, 1971.

B2. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. Academic Press,
1980.
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Appendix C

LARGE SIGNAl APPROXIMATION FOR CHERNOFF INFORMATION FOR
AN EXPONENTIAL FAMILY OF PROBABILITY DENSITIES

In this appendix we detail proofs for Fact 5 in the main text that provide upper bounds to the

Chernoff Information for large signal. It is repeated here:

Consider densities of the form pn(x) = 2r{}) exp { 1}} where A(r) e21r }1/2

Then if Z denotes the following limit:

dc(s) - log{f Ani2(X)pI/2(X - s)dx}
Z = lim -= lim

sa OO - logpn(s) a 00 -log pn(S)

it must be that
Z =2r, r I 

1r2 

-= 2' rl
Proof: Probability densities of this form are known as Generalized Gaussian density with

decay rate r and variance a2. We begin with the r > 1 case.

1 For r> 1:

Dividing the limits of the integral involved in C(s) as follows:

j| pl2(x)p/ 2(x - s)dx = J p'I2(x)p/I2(x - s)dx + JSpn2(x)pv2(x- )d
-00 f00 fo

+ j Pnl2(x)pnl2(x -s)dx (C-1)
s~~~

Now denoting b = A(r)r and K = 1 the second term on the RHS of the above
2F{1+ }A(r)

equation simplifies to,

JlFPn/ A ( n(- s)dx = C Iexp -{IxIT dx

< Kj exp {lIX + lX-_l} dx

where the inequality was introduced by using the relation:(Ref. Cl)

IxIr + IX - ir > {jXj + |X- _ (C-2)
2rT1 C2
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which holds for all r > 1 and for all x and s. Thus, by recognizing that Ixj + Ix - sl = s over

the region of integration, we have that

APn/2(x)pn2(x - s)dx < K jexp SI
T dx

- s exp 2TIrI (C-3)

Proceeding, we turn our attention to the first term in Eq. C-1 to establish an upper bound

fox the integral as follows:

| p/2(x)pl/ 2 (x-s)dx K fb e-I xp -I2b - dx.

Now the term {exp - -,br } has its maximum value at x = 0 for x E [-oo, 0], hence we may

upper bound the integral by,

LPn 2 nx p -2xs)dx < KJ exp Iexp 2IsIT00 L ~~~~~2b ep2b d
= K exp I f0 -IxrI dx

2sb f 0 0 exp 2 b~d

Kexp {-sI} 21/r (C-4)

where the latter integral was evaluated by using the fact that K exp L is a valid density

function. Similarly we may upper bound the third term in Eq. C-1 as follows:

Pn2()n _2(s)dx = K J exp exp xp x 2bsI dx

Here the term {exp } has its maximum value at x = s for x E [s, oo]. Hence we can

upper bound the integral by,

1/2 12X -. T [00 -x - J
n-s)dx < KICxp 2b , exp 2b dx

= Kexp {I2s T 21/ (C-5)

where the latter integral was evaluated as before. Therefore by combining the upper bounds

on the terms in the RHS of Eq.( C-1) we arrive at the following upper bound

112(X~~~pll2___ IsIr
Pnn/2(x)P/2(x - s)dx < 21/Texp { 2b } + Ks exp 2Tb (C-6)

Thus it must be that,
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- log{f°O, prV2(X)pl 2(X- s)dx}
- logf - lo npu ~ dx

-TeferPno(E)

Therefore from Eq. C ,

Z = lim
s0oo

- log{21 /T exp =faIT + Ks exp 'b }
-log KC + lslr/b

- log{fpVn(x)p(n - s)dx}
- log ps(s)

|-log {exp [-2]}rb log {Ks + 21 / exp 2b+ 2rb

1 I°° sfITb IsIT/b fI

Now as s oo: exp [+ ±sr] - 0 since r > 1, so the above limit reduces to,

Z > limn {!Is,2 b - log{Ks}}
1 SOO lsl12b logj/sJ

-2r
(C-7)

thus establishing a lower bound on Z. Now we seek to bound Z from above by the same
quantity and we proceed as follows.

We know that:

fIx x Ix [O. s]. Hence

for x G [0, s]. Hence,

Jp1/2(X)p112(X _ s)dx 2I"" pll2(x)p.I12(x - s)dx

> 2]J Ke- 2b dx

= s2 _Ke9a/2 e r-1(2 - dx)]-
.r s/ 9 r_2-F]

= 2Ke 2b / e 2b2 dx

2Ke 2 12 [s l(2 -, le 2b
2b

- 11 .

Therefore we have,

1 PnW2 (x)p -2 (x -s)dx
> jPn1/2(x)pl2(x -s)dx.

2Ke~ 2b s ]r[_

[Sr-1(2- l) e 2b

2b

Therefore,

Z < lim
s8-00

2K ~ -loge~v-log~ Ir[-, I I
- o ,-1( 'i7) -lge blog e 2b

{ b- 

a

- 1}
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lim 2b -s 21

1 (C-8)

2r

Hence combining the upper and lower bounds of Eqs. C-7 and C-8 we get the desired result.E

2 For r < 1 :

Let us start out by establishing a general upper bound valid for all probability densities. We
shall first upper bound the Chernoff information C(s) using Jensen's inequality:

dc(s) = -log{J Pn2(x)pn2(x -s)dx}

= -log Ex{ P 2(X-) } }

< Ex{1og{pfl(x-s)
p112(X)

= -dKL(S) (C-9)
2

Thus it is sufficient to show that,

lim- S dKL(S) = 1 (C-10)
-log p10 (s)-

Proceeding: we may write the above ratio as

dKL(s) _ f{log{pn(x) -logp1 (x - s)}}pn(x)dx
-09 Pn (S) -log p.(S)

The final result is readily established by making the following assumptions

(a) pn(x) is symmetric in the tails,

(b) lima boo lg } = 0 for all x,

(c) 1ims 0 0 logpn (- = 1 for all x.
LIogp~(Sa

to arrive at:

ZE < EiMS --+ { 1 dKL(S) I 
Z 2lims -* cc {2-lOgpn(S)} 2

Thus establishing the desired result. As before, we shall lower bound Z by the same quantity
namely 2. Here we make use of the fact that

IXIT + Ix - SIr > IsIT

for x e [0, s]. Therefore,

11 l2(X)pll2(X ~Z Je 2b~dJos /n n - s)dx K J e s }dx

< Kse{-8r}
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407

also from Eqs. (C-4) and (C-5), -

-~~~~~~~~~~~~~~~ S I0 ~~~~~21/r j1 rr,J0pl/2 (x)p'l2 (x - s)dx < - b
00 ~~~~~2

and,
[00 pnl/2(X)pl/2(X - ~ t{ 2b}
a Pn/2(z)Pn -s)dx < 2 e

Therefore,

LJPnx n - s)dx < Kse{ 2b} + 21/Ie{ }

= e{T2b }{21/ + Ks}.

Hence,

-log 2' /r + KCS} + 2br
Z > lim g / r)

2-

By combining the upper and lower bounds together we get the desired result.

If we consider only the Generalized Gaussian density function, we must have:

For r > 1:
dc(s) = -logpn(S) (C-li)

2r

and for r < 1:
dc(s) = -logp.(sS) (C-12)

2

for large 's'.

REFERENCE
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Appendix D

CM FORTRAN SIMULATION CODES

program simulation
integer NtMax, NMAX, MMAX, EMAX, SMAX

parameter (NMAX= 256, N2MAX= 256, MMAX=20, EMAX= 7)

C NtMAX: max number of blocks of time series data
C NMAX: time series length; actually a slice small enough to fit machine
C N2MAX: second time series length to do multiple slices in parallel
C MMAX: maximum number of channels
C EMAX: maximum number of Energy levels

Real pO,p1 ! apriori prob of HO to Hi
Real, array(EMAX), DATA ::EE = [0.1, 1.0, 10.0, 30.0, 50.0, 75.0, 100.0]
Real N(NMAX, N2MAX, MMAX)! time series of noise, variance 1 noise

Real W(NMAX, N2MAX)

Real WW(NMAX, N2MAX)

Real R(NMAX, N2MAX)

Real L(NMAX, N2MAX)

Real P(MMAX, EMAX)

Real Ptemp(MMAX, EMAX)

Real a, temp, s, noise
character*10 PDF, myPDF

! iid among samples and
! time series of weighted
! time series of weighted
! time series of received
! time series of Bayesian
! prob. of error
! prob. of error

among channels
received signal
received signal
data
statistic

LAYOUT N(:serial, :news,
LAYOUT R(:serial, :news)
LAYOUT W(:serial, :news)
LAYOUT WW(:serial, :news)
LAYOUT P(:news, :news)
LAYOUT Ptemp(:news, :news
Integer ns, ne, i, im, m,
Integer thePDF
include 'Random.h'
include 'LogLRT.h'
include 'angle.comments'

:news), L(:serial, :news)

)
Ei, ii, j, jj

pO =O .5

p 1 =0.5

10 print*,'Which noise PDF ?
read*,PDF
print* ,PDF
if (whichPDF(PDF) .EQ. 0) then

print*, 'hey'
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go to 10
end if
print*,whichPDF(PDF)

11 print*,'Which detector PDF ?
read* ,myPDF
print* ,myPDF
if (whichPDF(myPDF) .EQ. 0) then

print*, 'hey'
go to 11

end if
print*,'How many slices (', NMAX*N2MAX,' samples each)?'
read*,NtMAX
P(1:MMAX,1:EMAX) = 0.0

do Nt =1, NtMAX !for all time slices Nt = 1: NtMax
do im = 1, MMAX

N(1:NMAX, 1:N2MAX, im) = MyRand(NMAX,N2MAX, PDF)

end do
Ptemp(1:MMAX, 1:EMAX) = 0.0

do Ei = 1, EMAX
EO = EE(Ei)

do m=1, MMAX ! m is the grouping index
L(:,:) = 0.0 init the statistic array
a = Sqrt(EO/m)
W(:,:) = 0.0

do i=1, m ! channel i
C R = a/2.0 + N(:,:,i) !this line for Importance Sampling

R = N(:,:,i) !this line for Monte Carlo
C W = W + LogLRT(NMAX, N2MAX, R, a/2.0, PDF, 1) !for IS

L = L + LogLRT(NMAX, N2MAX, R, a, myPDF, 1) !for both

end do
WW(:,:) = 0.0

forall (ii=l:NMAX, jj=l:N2MAX, L(ii,jj).LT.Log(pl/pO))
1 WW(ii,jj) = 1.0 !for Monte Carlo

C 1 WW(ii,jj) = Exp(W(ii,jj)) !for IS
temp = sum(WW)

Ptemp(m, Ei) = temp
C Accumulate the empirical prob of error across time slice

P(m,Ei) = P(m,Ei) + temp
end do ! channel grouping

end do ! energy
end do !time slices
P= P/ (NMAX*N2MAX*NtMAX)

print*,PDF, '-' ,myPDF
write(*,98)EE(1 :EMAX)

98 format(lx,' ml, E->',7(F16.4, ' '))
do m= 1,MMAX

write(*,99)m, P(m, 1:EMAX)
99 format(lx,I4,TR1,7(G20.8, '
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end do
end

include 'Random. f cm'
include 'LogLRT.fcm'

C...............................................................................
C File LogLRT.fcm

function LogLRT(NN,N2, R, a, PDF, s)
Integer NN, N2 ! vector length, number of channels
Real LogLRT(NN,N2)
Real R(NN, N2), a, s received vector, translation, std dev
character*10 PDF ! which pdf

CMF$ LAYOUT LogLRT(:serial, :news), R(:serial, :news)

integer i
Real a2, s2
Real AA2, AA4, GQuarter, GFiveQ, GThreeQ
interface

integer function whichPDF(PDF)
character*10 PDF

end interface

C calculates the statistic for use in the Optimal test
a2 = a*a
s2 = s*s
select case (whichPDF(PDF))
case (:O)

LogLRT(1:NN, 1:N2) = 0.0
case (1) !Gaussian

LogLRT(1:NN, 1:N2) =-(a/s2)*R(1:NN, 1:N2) + a2/(2.0*s2)
case (2) !Laplacian

LogLRT(l:NN, 1:N2) =
I -(1/s)*Sqrt(2.0)*(Abs(R(1:NN,1:N2)) - Abs(R(l:NN,l:N2) -a))

case (3) !Cauchy
LogLRT(1:NN,1:N2) =

1 Log((1.0 + ((R(1:NN,1:N2) -a)/s)**2)/(1+ (R(1:NN,l:N2)/s)**2))
case (4:) !GenGasuss4

GQuarter = 3.6256099082
GThreeQ = 1.2254167024
GFiveQ = GQuarter/4.0
AA2 = s2*GQuarter/GThreeQ

AA4 = AA2*AA2

LogLRT(1:NN,1:N2) = (1.0/AA4)*((R(1:NN,1:N2)-a)**4 -R(1:NN,1:N2)**4)
end select
return
end function

C...............................................................................
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C File Random.fcm

Function RandUniform(N,N2)
Integer N,N2
Real RandUniform(N,N2)

CMF$ LAYOUT RandUniform(:serial,:news)

100 call cmf-random(RandUniform(1:N,1:N2))
if ((minval(RandUniform) <= 0.0) .OR. (maxval(RandUniform) >= 1.0))then

goto 100
end if
end

Function RandGaussian(N,N2)
Integer N,N2
Real RandGaussian(N,N2)
Real Temp(NN2)
Logical ISHALF(N, N2)

CMF$ LAYOUT RandGaussian(:serial, :news)

CMF$ LAYOUT Temp(:serial, :news)

CMF$ LAYOUT ISHALF(:serial, :news)

integer i, j
real twopi

twopi = 4.0*acos(O.0)
100 call cmf-random(Temp(1:N,1:N2))

RandGaussian(1:N,1:N2) = SQRT(-2.0*Log(Temp(1:N,1:N2)))
200 call cmfrandom(Temp(1:N,1:N2))

RandGaussian = RandGaussian*cos(TwoPi*Temp)
end

Function RandLaplacian(N,N2)
Integer NN2
Real RandLaplacian(N, N2)
Real Temp(N, N2)

CMF$ LAYOUT RandLaplacian(:serial, :news), Temp(:serial, :news)
Real s2
Integer i, j

100 call cmf-random(Temp(1:N,1:N2))
if ((minval(Temp) <= 0.0) .OR. (maxval(Temp) >= 1.0)) then

goto 100
end if
s2 = 1.0 /Sqrt(2.0)
RandLaplacian(1:N,1:N2) = s2*Log(Temp(1:N,1:N2))
call cmfrandom(Temp(1:N,1:N2))
forall (i=l:N, j=l:N2, Temp(i,j) > 0.5)

1 RandLaplacian(i,j) = - RandLaplacian(i,j)
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end

Function RandCauchy(N,N2)
Integer N,N2
Real RandCauchy(N,N2)
Real Temp(NN2)

CMF$ LAYOUT RandCauchy(:serial,

Integer i, j
Pi = 2.0*acos(O.0)

100

C

:news), Temp(:serial, :news)

call cmf-random(Temp(1:N,1:N2))
if ((minval(Temp) <= 0.0) .OR. (maxval(Temp) >= 1.0)) then

print*, 'bad'
goto 100

end if
RandCauchy(l:N,1:N2) = tan(Pi*(Temp(l:N, 1:N2) - 0.5))
end

Include 'Gamma.f cm'

Function RandGenGauss4(N,N2)
Integer NN2
Real RandGenGauss4(N,N2)
Real Temp(N,N2), X(N,N2)

CMF$ LAYOUT RandGenGauss4(:serial, :news), Temp(:serial, :news)
CMF$ LAYOUT X(:serial, :news)

Real A, A4, GQuarter, GFiveQ, GThreeQ, alpha
Integer i, j, ii, jj
real twopi
interface

function RandGammal (N, N2, aa)
integer N, N2

real RandGammal(N,N2), aa
CMF$ LAYOUT RandGammal(:serial, :news)

end interface

twopi = 4.0*acos(O.0)
alpha = 1.0/4.0
GQuarter = 3.6256099082
GThreeQ = 1.2254167024
GFiveQ = GQuarter/4.0
A = Sqrt(GQuarter/GThreeQ)

call cmf-random(Temp(1:N,1:N2))
if ((minval(Temp) <= 0.0) .OR. (maxval(Temp) >= 1.0))

print*, 'bad'
goto 100

end if
X(1:N, 1:N2) = RandGammal(N, N2, alpha)

100

C

then
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RandGenGauss4 = A*SQRT(SQRT(X))
call cmf-random(Temp(1:N,1:N2))
forall (ii=l:N, jj=l:N2, Temp(iijj)>0.5)

RandGenGauss4(iijj) = - RandGenGauss4(iijj)
end function

Function MyRand(NN2, PDF)
Integer N, N2

Real MyRand(N, N2)
Character*10 PDF
Real Temp(N, N2)

LAYOUT MyRand(:serial, :news), Temp(:serial, :news)

interface
integer function whichPDF(PDF)
character*10 PDF

end interface

interface
function RandUniform (NN2)
integer NN2
real RandUniform(NN2)
LAYOUT RandUniform(:serial, :news)

end interface

interface
function RandGaussian (NN2)
integer NN2
real RandGaussian(NN2)
real Temp(NN2)
LAYOUT RandGaussian(:serial, :news), Temp(:serial, :news)

end interface
interface

function RandLaplacian (NN2)
integer NN2
real RandLaplacian(NN2)
real Temp(NN2)
LAYOUT RandLaplacian(:serial, :news), Temp(:serial, :news)

end interface
interface

function RandCauchy (N, N2)
integer NN2
real RandCauchy(N, N2)
real Temp(N, N2)
LAYOUT RandCauchy(:serial, :news), Temp(:serial, :news)

end interface
interface

function RandGenGauss4 (NN2)

CMF$

CMF$

CMF$

CMF$

CMF$
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integer NN2
real RandGenGauss4(N,N2)
real Temp(N,N2)

CMF$ LAYOUT RandGenGauss4(:serial, :news), Temp(:serial, :news)
end interface

select case (whichPDF(PDF))
case (:O)

MyRand = 0.0
case (1)

MyRand = RandGaussian(N,N2)

case (2)
MyRand = RandLaplacian(N,N2)

case (3)
MyRand = RandCauchy(N,N2)

case (4)
MyRand = RandGenGauss4(N,N2)

case (5)
MyRand = RandUniform(N,N2)

case (6:)
MyRand = 0.0

end select
return
end function

Function whichPDF(PDF)
integer whichPDF
character*10 PDF

if(index(PDF,'Normal').NE.0) then
whichPDF = 1

else if(index(PDF,'normal').NE.0) then
whichPDF = 1

else if(index(PDF,'gaussian').NE.0) then
whichPDF = 1

else if(index(PDF,'Gaussian').NE.0) then
whichPDF = 1

else if(index(PDF,'Laplacian').NE.0) then
whichPDF = 2

else if(index(PDF,'Laplace').NE.O) then
whichPDF = 2

else if(index(PDF,'laplacian').NE.0) then
whichPDF = 2

else if(index(PDF,'laplace').NE.0) then
whichPDF = 2

else if(index(PDF,'Cauchy').NE.0) then
whichPDF = 3

else if(index(PDF,'cauchy').NE.O) then
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whichPDF = 3

else if(index(PDF,'GenGauss4').NE.O) then
whichPDF = 4

else if(index(PDF,'gengauss4').NE.O) then
whichPDF = 4

else if(index(PDF,'Gengauss4').NE.O) then
whichPDF = 4

else if(index(PDF,'uniform').NE.0) then
whichPDF = 5

else if(index(PDF,'Uniform').NE.0) then
whichPDF = 5

else
whichPDF = 0

end if
return
end function

Function erf(NMAX, N2MAX, R, x)
real erf
integer NMAX, N2MAX

real R(NMAX, N2MAX)

real x
CMF$ LAYOUT R(:serial, :news)

real One(NMAX, N2MAX)

CMF$ LAYOUT One(:serial, :news)

integer ii,jj

One(:,:) = 0.0
forall(ii=l:NMAX, jj=l:N2MAX, R(ii,jj).LT.real(x))

1 One(ii,jj)=l.O
erf = sum(One)/real(N2MAX*NMAX)
return
end function

C...............................................................................
C File Gamma.fcm

Function RandGammal(N, N2, aa)
Integer N,N2
Real RandGammal (N ,N2)
Real aa
Real Temp(NN2)
Real Temp2(N,N2)
Real X(N,N2)
Real Y(N,N2)
Real Z(N,N2)

CMF$ LAYOUT RandGammal(:serial, :news), Temp(:serial, :news)
CMF$ LAYOUT Temp2(:serial, :news)
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CMF$ LAYOUT X(:serial, :news)

CMF$ LAYOUT Y(:serial, :news)

Integer i, j, retry
Real b

retry = 0

C print*,'aa', aa
b = 1.0/(l.O-aa)
call cmf._random(Temp(1:N, 1:N2))
X(:, :) = Temp(:, :)**(1.0/aa)
call cmfrandom(Temp(1:N, 1:N2))
Y(:, :) = X(:, :) + Temp(:,:)**b

100 if (maxval(Y).GT.1.0) then
retry = retry + 1
if (mod(retry,100) .EQ.0 ) then

C print*,'retry =', retry
endif
call cmf-random(Temp2(1:N, i:N2))
call cmf-random(Temp(1:N, 1:N2))
where (Y(:,:).GT.l.0)

X(:, :) = Temp(:, :)**(1.0/aa)
Y(:, :) = X(:, :) + Temp2(:,:)**b

end where
goto 100

end if
C print*,'retry = ', retry
101 call cmf-random(Temp(1:N,1:N2))

if (minval(Temp) <= 0.0) then
C print*,'bad'

goto 101
end if

102 call cmf-random(Temp2(1:N, 1:N2))
if (minval(Temp2)<= 0.0) then

C print*,'bad'
goto 102

end if
RandGammal = X*(-log(Temp*Temp2))
end

................................................................................

C File Random.h

interface
function myRand(N, N2, PDF)

integer N, N2

character*10 PDF
real myRand(N,N2)
real Temp(NN2)

CMF$ LAYOUT myRand(:serial, :news), Temp(:serial, :news)
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end interface

interface
integer function whichPDF(PDF)
character*10 PDF

end interface

interface
function RandUniform (N,N2)
integer N,N2
real RandUniform(N,N2)
LAYOUT RandUniform(:serial, :news)

end interface

interface
function RandGaussian (N,N2)
integer N,N2
real RandGaussian(N,N2)
real Temp(N,N2)
LAYOUT RandGaussian(:serial, :news), Temp(:serial, :new

end interface
interface

function RandLaplacian (N,N2)
integer N,N2
real RandLaplacian(N,N2)
real Temp(N,N2)
LAYOUT RandLaplacian(:serial, :news), Temp(:serial, :ne

end interface
interface

function RandCauchy (N, N2)
integer NN2
real RandCauchy(N, N2)
real Temp(N, N2)
LAYOUT RandCauchy(:serial, :news), Temp(:serial, :news)

end interface
interface

function RandGenGauss4 (N,N2)
integer N,N2
real RandGenGauss4(N,N2)
real Temp(NN2)
LAYOUT RandGenGauss4(:serial, :news), Temp(:serial, :ne

end interface

interface
function erf(NMAX, N2MAX, R, x)
real erf
integer NMAX, N2MAX

real R(NMAX, N2MAX)

CMF$

CMF$

CMF$

CMF$

CMF$

'S)

Ws)

3Vs)
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CMF$

real x
LAYOUT R(:serial, :news)

end interface
................................................................................
C File LogLRT. h

interface
function LogLRT(NN,N2, R, a, PDF, s)
Real LogLRT(NN,N2)
character*10 PDF ! which pdf
Integer NN, N2 ! vector length, number of channels
Real R(NN, N2), a, s

CMF$ LAYOUT LogLRT(:serial, :news), R(:serial, :news)
end interface
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